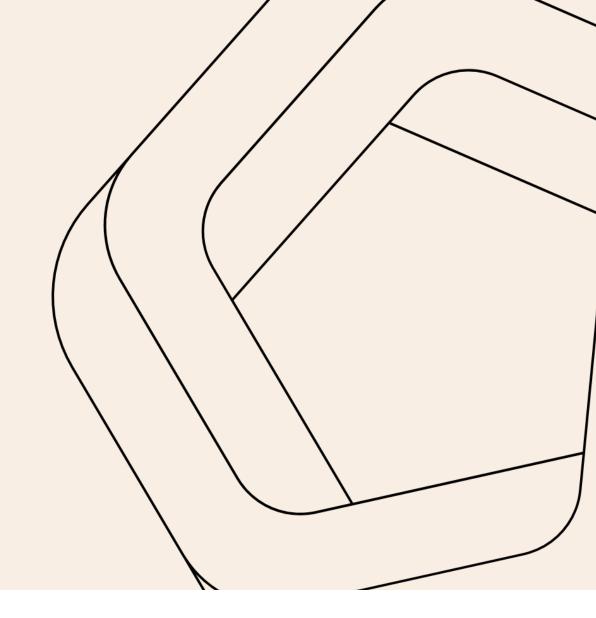
Free Text Classification with Neural Networks:

Training, Process Integration and Results for ISCO-08 Job Titles

Patrick Mertes • Inspirient Sophie Tschersich • Verian Group

General Online Research Conference 2024 (GOR 24) Cologne, 22 February 2024



The Need to Automate Free Text Classification

Relevance and Research Question

Why is it necessary to classify job titles?

- Essential Data: Job titles are gathered in nearly all empirical social research studies
- Analytical Necessity: Classifying occupational groups can be crucial for analyzing survey data
- Standardization Systems: Two common systems are used for occupation coding in Germany:
 - ISCO (international): Ensures international comparability, governed by the ILO
 - KldB (national): Provides national comparability, administered by the Federal Statistical Office

How was this done without neural networks?

- Traditional Approach: Utilized lookup tables for exact matching with official directories
- Inherent Limitations: Variations in spelling, paraphrasing, and typos required extensive manual review

A time-consuming and labour-intensive task that easily suffers from inconsistencies due to differences in expertise

ISCO-08 in a Nutshell

Quick Example

ISCO-08: Framework for organizing information on labour and jobs globally, with worldwide acceptance for categorizing job titles

Hierarchical Structure	Count	Example 1	Example 2
		Family medical practitioner	Shoemaker
Major Groups	10	2 - Professionals	7 - Craft and related trades workers
Sub-Major Groups	43	22 - Health Professionals	75 - Food processing, wood working, garment and other craft and related trades workers
Minor Groups	130	221 - Medical Doctors	753 - Garment and Related Trades Workers
Unit Groups	436	2211 - Generalist Medical Practitioners 2212 - Specialist Medical Practitioners s is what we need to classify	7531 - Tailors, Dressmakers, Furriers and Hatters 7532 - Garment and Related Patternmakers and Cutters 7533 - Sewing, Embroidery and Related Workers 7534 - Upholsterers and Related Workers 7535 - Pelt Dressers, Tanners and Fellmongers 7536 Shoemakers and Related Workers

Aiming for Efficiency and Consistency

Goals

Goal

Increased efficiency

Increased consistency through recommendations

Retain highest accuracy

Integration into existing workflow

Less than 50% recommended codes need manual decision

More stable project planning and calculation

From Job Titles to Training Data

Machine Learning Setup

Available Data

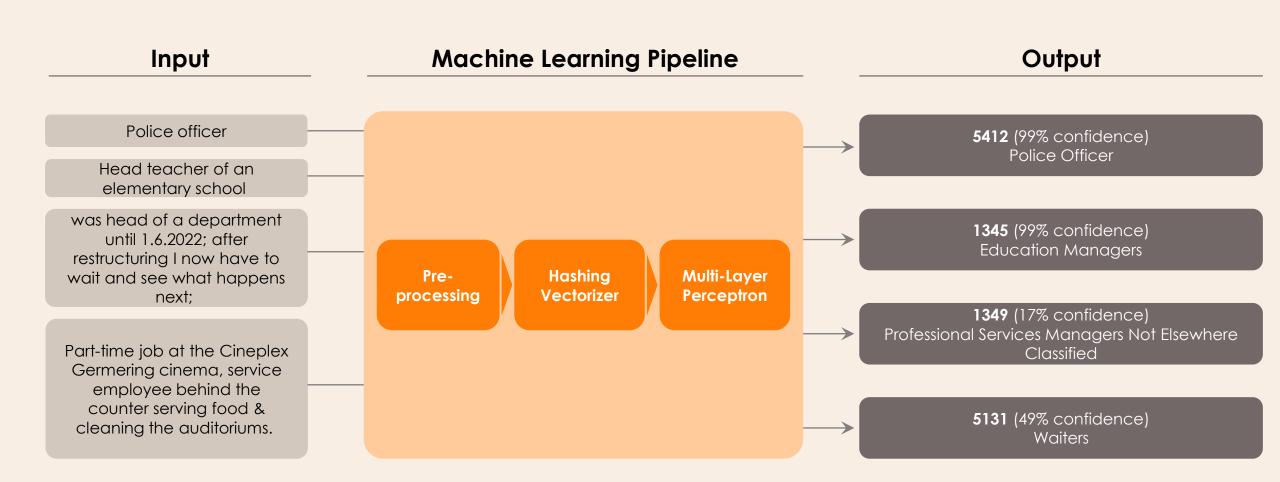
- Historical data from several past years projects
- Around 100.000 distinct German job titles

Difficulties for Machine Learning (examples)

- **Unique:** Teilzeitarbeitsverhältnis im Kino Cineplex Germering, Service-Mitarbeiter hinter der Theke zum Essen ausgeben & Sääle säubern
- Very similar, but different class: Lehrerin, Fahrlehrer BE, Grundschullehrerin, Förderlehrerin, Klavierlehrerin, etc.
- Multiple jobs with different classes: 1. Fitnesstrainierin (Aerobickurse) 2. Gymnasiallehrerin (Sport und Deutsch), Schulleitung und Lehrerin Grundschule - Verwaltungsaufgaben, etc.
- Gender-specific spelling variations: Lehrender, Lehrerin, Lehrer; Kaufmann, Kauffrau; Koch, Köchin

AI Classification Steps

Technical Dataflow Pipeline



Evaluation of Classification Accuracy

Focus on pre-trained classifiers

Approach

- 1) Train classifiers with selection of Verian's historic manual classifications
- 2) Apply classifier to other datasets to test real-world applicability¹

Verian GER Evaluation Datasets

 Project A.sav Accuracy 83% Coverage 86% Project B.sav Accuracy 83% Coverage 84% Project C.sav Accuracy 83% Coverage 88%

Classification System

ISCO-08

International Standard Classification of Occupations

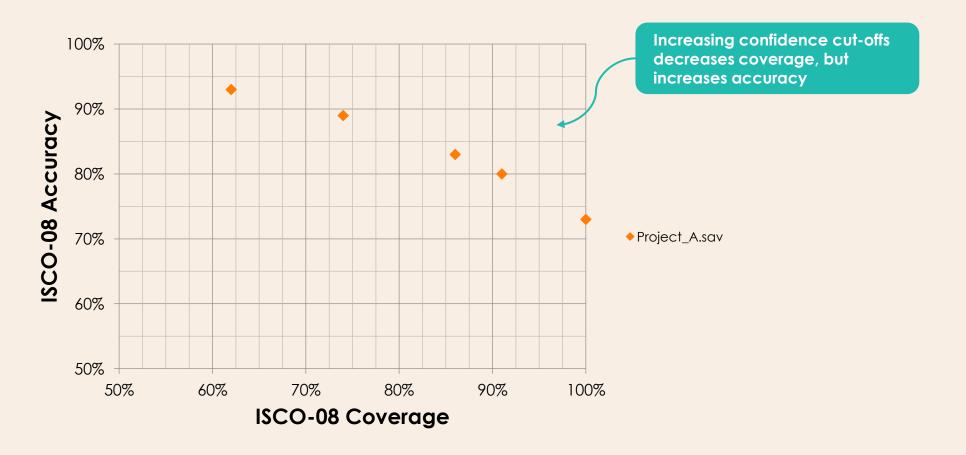
> 86% of the data with 83 % accuracy

But the labels should be 100% accurate. How do we know when to trust the AI?

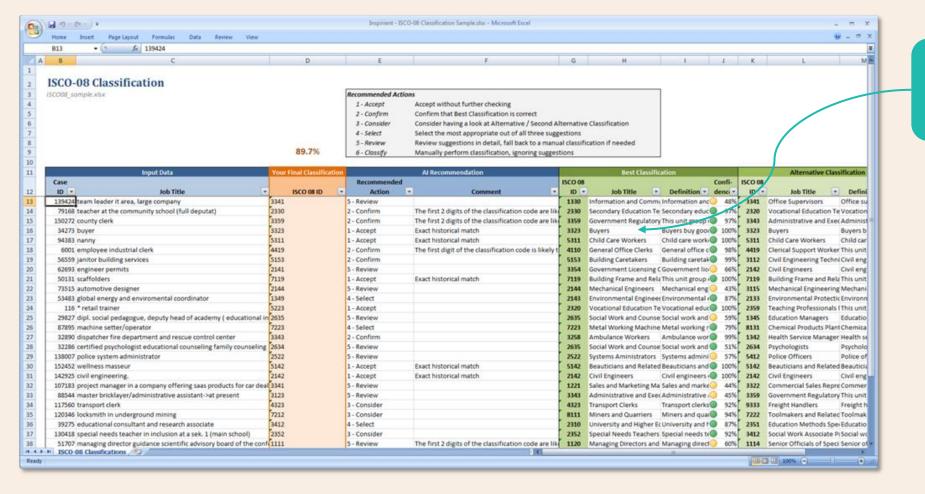
^{1.} Classifiers configured to only report classifications with >40% confidence for this evaluation

Deep-dive: Accuracy vs. Coverage

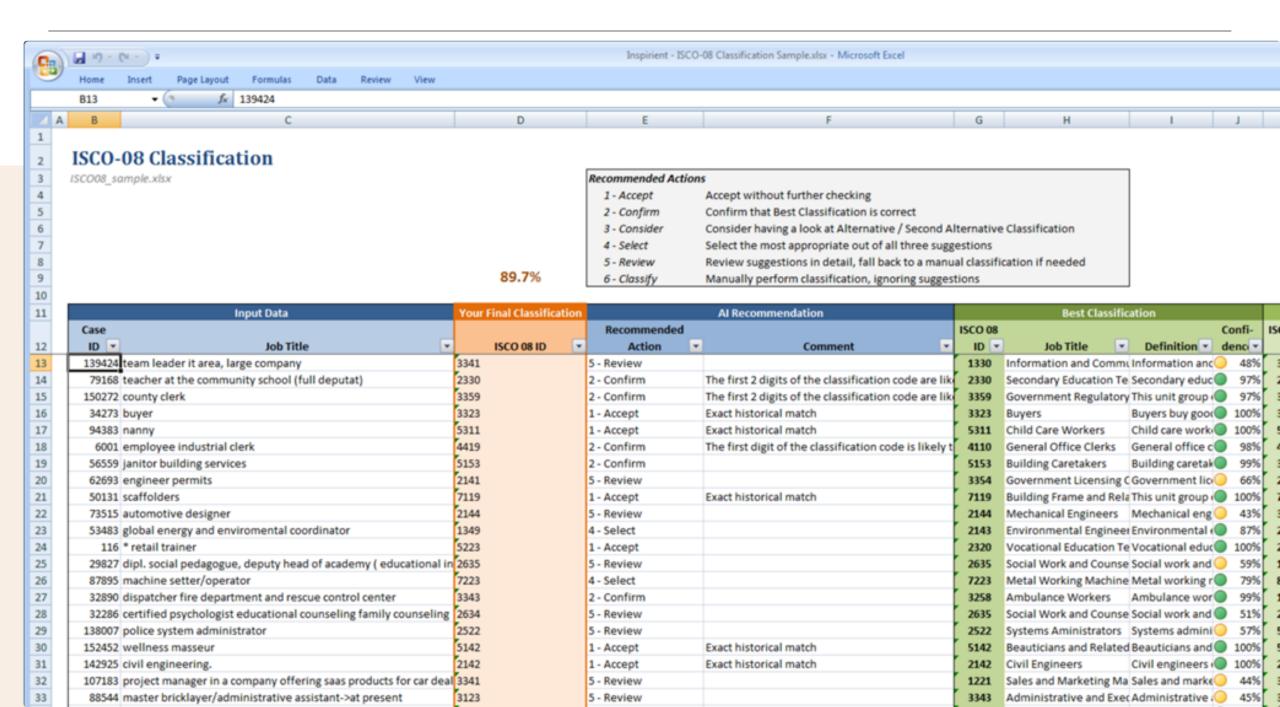
Trading lower coverage for increased accuracy



For Real Efficiency Gains, Classifier Results Are Tightly Integrated into Existing Workflow

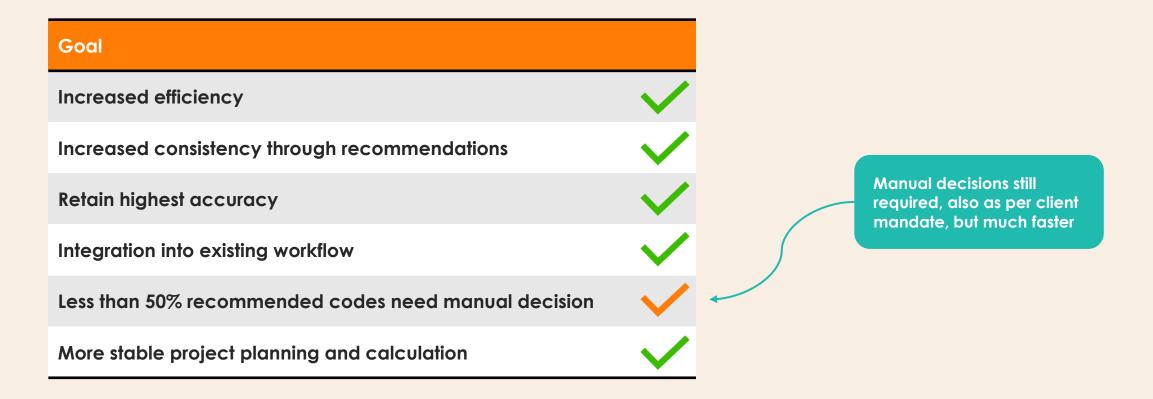


incl. per-interview recommended action and suggested classifications



Six Key Benefits

Business Impact



Future Work

Next steps to further advance this method

Potential improvements to NN classifiers:

- Continuous Improvement: Accuracy enhancement through ongoing learning from new data and corrections.
- Training for Coders: Up-skilling manual coders with datasets for improved efficiency and accuracy.
- Broader Implementation: Extending the model to additional national and international classifications, like ISCED and KldB2010.

First tests show that the same approach works very well.

KldB 2010

Klassifikation der Berufe

Accuracy

82%

89% Coverage

WZ 2008

Klassifikation der Wirtschaftszweige

89% Accuracy

90% Coverage

Contact Information

Patrick Mertes • patrick.mertes@inspirient.com

Sophie Tschersich • sophie.tschersich@veriangroup.com

